Selamat Datang Ke BLOG ACHTUNG...Semoga beroleh manfaat.

Selasa, 21 Jun 2011

TECHNOLOGY : Scarpar's high speed, all-terrain powerboard


Two years ago, we had a look at the Scarpar - a twin-tracked, high speed all terrain powerboard that seemed like a promising power toy. Well, we've just spoken to Scarpar CEO Andrew Fern, who has confirmed that this unique vehicle is going into production later this year, and he's taking deposits as of now. Basically everything on the board has been changed since the last prototype we saw - it now runs an independent electric motor in each of the two articulating tracks, and the hand-held throttle and brake unit is now wireless. And as Fern describes after the jump, getting it to a production-ready point has been a herculean effort; his design team more or less had to create their own realm of engineering theory to deal with such an unprecedented set of vehicle dynamics. The following interview is a fascinating look into the development cycle of a new product. Most importantly though, the Scarpar still looks like extreme fun, and a remarkable way to launch yourself into the foliage.

It seemed like such a simple idea when we first looked at it - a tank-style track at each end of a skateboard, combining the fun steering and carving of a skateboard with all-terrain drive capability and the ability to reach high speeds. The Scarpar is a hard device not to like at first glance.

But CEO Andrew Fern found that consumer enthusiasm doesn't necessarily translate itself into capital in this day and age: "When you've got a device to take to market, venture capital and angel capital are noticeably absent. Everybody's looking for the next Twitter or Facebook or whatever, but if you've got a physical device, it's a pretty tough slog."

So, armed with a small team and a "bootstrap" budget, Fern has taken longer than expected to push the project toward a commercial reality. Based in Queensland, Australia, he engaged aerospace/automotive specialists EDAG as his engineering partners and set them to work on turning the Scarpar prototype into a safe and well thought through product.



But the engineering process proved far from straightforward: "It has been a lot more complex and difficult than even EDAG estimated it could be," says Fern, "I mean, how hard can it be? It's just a board with tracks and a motor, and the tracks articulate. But when you get down to it, OK, what are the losses in the system, and how much torque do you actually need to turn those tracks - and by the way, where are those tracks going to come from? Because they don't exist. So every part has to be made.

"The tracks themselves are a really good example of the engineering challenges. The tracks are basically a one meter continuous loop, the equivalent of a timing belt. But a timing belt is not designed to be bashed from the outside ... We needed the precision of a timing belt, but we needed the ability to take a hit from the outside of something like a snowmobile track ... Now, a snowmobile has no constraints in terms of weight, they have a huge amount of power, so they don't have to build things light. Whereas we're trying to build a track that weighs a couple of kilos, that can run at 50 km/h, and be bashed from the outside, and is still precision enough to make the losses very low so we can actually power the thing... The engineering challenges with making something like this lightweight are really significant."

Tiada ulasan: